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An algorithm for calculating the frequency spectrum of polyvinyl chloride pigmented with a metal has been
developed on the basis of the Hamiltonian formalism. The dependence of the viscoelastic properties of this
composite in the frequency range unattainable for low-molecular crystals on the inter- and intramolecular in-
teractions occurring in it and the surface properties of the pigment was determined.

Metal-pigmented flexible-chain polymers are among the heterogeneous polymers, the energy-exchange proc-
esses occurring in which are not clearly understood [1, 2]. The most characteristic feature of these polymers is that
practically all their components are diametrically different in physical properties. This poses a number of theoretical
and practical problems [3], the solution of which calls for the development of new methods for determining the func-
tional dependences between the micro- and macroproperties of a composite. Since amorphous polymers contain only
fluctuating structural elements with finite lifetimes [4], which are difficult to investigate by direct methods, acoustic-
spectroscopy methods appear to have the greatest promise for investigating these polymers [5]. However, in this case,
the problem on the dependence of the viscoelastic properties of heterogeneous systems based on flexible-chain poly-
mers on the inter- and intramolecular interactions occurring in them and the content of a microatomized metal with
which they are pigmented remains unsolved. Because of this, the aim of the present work is to develop and analyze a
physical model of a heterogeneous polymer system that would allow us to find quantitative relations between the mac-
roscopic parameters of a polyvinyl chloride (PVC) composite and the characteristics of its molecular mobility.

Model. In accordance with the ergodic principles of statistical thermodynamics [6], to define structures formed
in a heterogeneous polymer system, we will perform double averaging: over the space x, y, z and the time t, consid-
ering a PVC macromolecule as a separate subsystem [7]. In this case, when the system is subjected to the action of a
mechanical force field with an ultrasonic frequency, all its structural elements and the corresponding-configuration con-
formation levels will manifest themselves as autonomous structural units. It should be noted that the supermolecular
structure of polymers, through which their viscoplastic properties are transferred to the macroscopic level, represents a
configuration of macromolecules, for the description of which there are no correct quantitative methods [8]. Therefore,
in what follows the structure organization of the molecular system being investigated and its structural elements will
be classified by one indication: geometric, thermodynamic, or kinetic characteristics. It should be noted that, in the
PVC being considered in the condensed state, there can arise fluctuation structures (which can be discrete) with finite
lifetimes [9]. It will be assumed that the total lifetime of separate relaxing structures is determined by the Boltzmann
formula [10].

Based on the data of [1, 2], we will construct a two-component PVC system consisting of a pigment and a
boundary layer at ϕ ≥ ϕcr. Since the particles of the pigment are spherical in shape, it will be assumed that the centers
of the spheres form a simple cubic lattice, the sites of which are imbedded into a polymer matrix in the state of a
boundary layer. In accordance with [11], the behavior of such a system in a dynamic mechanical field is considered
as a cooperative change in the conformational state of its elements. In this case, a PVC macromolecule will be repre-
sented as a condensed system of atoms interacting with each other due to the potential forces [7].
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The specific internal energy of the indicated system will be determined by summation of the potential energy
of interaction of an atom with any other atom of the principal-valence chain of a PVC macromolecule and the poten-
tial interaction energy of an atom forming a pair with another atom as a result of the intermolecular interaction and
due to the existence of active centers on the surface of a microatomized pigment. The sum obtained is multiplied by
the number of atoms in the system. It is assumed that the lifetime of fluctuating structures representing atomic struc-
ture formations satisfy the condition τ >> 0, i.e., they do not break down and do not change substantially under the
action of a periodic external force field.

As the potential of the intramolecular interatomic interaction we will use the interatomic Lennard–Jones poten-
tial u1(r) [12] representing the sum
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The potential A(l/r)m1 in (1) defines the repulsion of electron clouds in the process of interaction of PVC atoms. The
potential BG(l/r)m3 is a function of the temperature and defines the pressure exerted by the flux of carriers emitted by
an atom and directed to the other atoms of the body. From (2) we obtain, in accordance with [12], that m1 = 12,
m2 = 6, and m3 = 5.

The force of interaction of an atom of the principal-valence chain of a PVC macromolecule with another atom
of the macromolecule, which is offset by the distance r from the first-mentioned atom, is equal to
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Accordingly, the intermolecular interaction can be represented in the form of the Morse potential u2(r) [13]. The force
of the intermacromolecular interaction (F2(r)) of an atom with another atom of the primary-macromolecule chain,
which is offset by the distance r from the first-mentioned atom, is equal to

F2 (r) = − 
∂u2 (r)
∂r

 = 2αD exp [− 2α (r − a)] − exp [− α (r − a)]

 . (4)

The force F2(r) acting on the system is equal to the additional external pressure P exerted on this system. For de-
termining the interrelation between F2(r) and P, it will be assumed that the atoms of the polymer system are ho-
mogeneously distributed with a density ni over the planes zi (i = 0, 1 , ...) parallel to the outer boundary of the
composite XOY for which i = 0. First, we will determine the resultant Rqi of the forces of interaction γ of an atom
of a macromolecule with coordinates x = 0, y = 0, z = zg with atoms of other macromolecules, lying in the plane zi.
In the plane zi we will separate an elementary area 2πydy that includes 2πydyni atoms. In this case, the resultant

dRqi will be equal to

dRqi = 2πydyni 
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The quantity Rqi will be defined as

Rqi = ∫ 
0

∞
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where ξqi = zqi, and Rq is calculated by summation of Rqi over all i:

Rq = ∑ 
i

n

Rqi .
(7)

If the distance between the planes zi is small, the force Rq can be defined as
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i1

n

Rqi1
 + ∑ 

i2

n

Rqi2
 = R1 + R2 , (8)

where, in the first approximation [10],

R1 = K1x1 . (9)

The system of equations (5)–(6) was solved using the method of successive approximations [14]. The first ap-
proximation for the steps between the layers of atoms of the principle-valence chain of a PVC macromolecule along
the z axis was selected arbitrarily. In a small iteration cycle, all steps, other than the steps hq = zq+1 − zq (q = 0, 1,
..., i), were constant. A deviation of the values of Rqi from a smoothly converging series was considered as an in-
dication of an error in hq; in this case, a new step was selected on condition that ∆h = (hqi − hqk) ≤ δ. The searching
steps hq selected for PVC systems were equal to the steps used for the initial PVC. This allowed us to perform a
comparative analysis of the relative shifts of the relaxation spectra of heterogeneous polymer systems. It was estab-
lished that, when C(q) ≥ 10, the relative value of the step between the layers of atoms in the direction of the z axis
is rapidly stabilized in both cases and remains practically unchanged independently of C. In our investigations, we in-
creased the distance r from zero to the value corresponding to the ultimate strength of the system, i.e., it was assumed
that r ≤ 1.245l in relation (3) and r ≤ 1.629l in relation (4) [15].

In addition to the inter- and intramolecular forces (8), surface (Fsur) and mass (Fmass) forces can act on a
PVC macromolecule in the direction of the z axis [15]. In this case, the equilibrium equation for an arbitrary ensemble
of atoms of the systems in the projection on the z axis in the Hamiltonian model [16], in which r(t) is a coordinate,
has the form

Rq + ∑ 
n
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Let us consider, in accordance with [11], the behavior of an individual macromolecule, the ends of which are
fixed due to the steric hindrances formed by the pigment particles and the roughness of their surface, i.e., hi =
zi+1 − zi = const. It has been established that if a PVC macromolecule is in a medium with a temperature thermostat,
an elastic force acts on its ends and, in doing so, binds them [17]. The ends of this macromolecule are held fixed be-
cause they are acted upon by the force R1(r) equal to the elastic force in absolute value and opposite to it in direc-
tion. According to (10), we have
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Solving (11), we obtain the eigenfrequency of vibrations of a segment of a PVC macromolecule:

ω = √3kT

Mnl
2  . (12)

It is seen from relation (12) that the high-frequency maximum ω is due to the displacement of the chain segment
equal in value to the segment responsible for the vitrification of the polymer [5]. For example, even in the PVC re-
gion with a temperature of (4.2–77) K, the mechanical losses caused by the intermolecular cooperative local motion of
groups of molecules were maximum at a frequency of 6⋅104 Hz. It is significant that, in the case where a weak ultra-
sonic field of higher frequency acts on the system, the chains of macromolecules play the role of crosslinks; therefore,
at ω ≥ 105 Hz the deformations of the composite are practically entirely reversible [10].

It has been established in [4] that 1–2% of the atoms of the surface of a microatomized metal pigment are
coordinationally unsaturated and that these atoms represent active centers of interaction of the pigment with a polymer
macromolecule. We will calculate the potential of the field formed by a system of such centers, assuming that the in-
teraction occurs in the medium with a large value of ε [11]. For this purpose, we will select a coordination system
with origin in the system of two ion-radicals and ri

 ⁄ rk << 1. In this case, the general expression for the interaction po-
tential ϕk(rk) will be as follows:
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where (α, β) = 1, 2, 3. On condition that 
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, this expression is simplified

and takes the form

ϕk (rk) = ϕ(0) + ϕ(1) + ϕ(2) + ... . (15)

Here
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Since the net charge of the system is equal to zero, ϕ(0)(rk) = 0 and ϕ(1)(rk) = 0 can be represented in the form

ϕ(1) (rk) = 
Piri

4πεε0r
3 , (19)

since qi ≠ 0 and Pi ≠ 0, ϕ(2)(rk) = 0 and ϕk(rk) = ϕ(1)(rk). Taking into account the isotropism of the heterogeneous
polymer system, we will assume that the index k is the number of fluctuating structures that are formed around a par-
ticle of a microatomized pigment; these structures are distributed homogeneously in a sphere of radius ri ≥ d. In this
case, summation in (17) Piri can be replaced by integration over the solid angle β
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Accordingly, the strength of the field induced as a result of the ion-radical interaction will be equal to

E = − ∇ϕ(1) = 
3Pirkrk

4πεε0r
5 − 
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4πεε0r
3 , (21)

and the force of interaction of an active center of the pigment surface with a polymer macromolecule will be deter-
mined as

Fk = qiE .
(22)

By analogy with (9), we obtain

Fk = K2x2 . (23)

If a polymer system is subjected to the action of an external controlling field σ(t), causing shear deformation,
expression (10) takes the form
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 = R2 and Kξ = R1; we assume that the boundary conditions for ξ = ξ(x, y, z, τ) have the form

ξ(x, y, 0, τ) = ξ(x, y, zqi, τ) and solve (24) in the following way:
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from where
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where 2β = B/M, M−1 = M1
−1 + M2

−1, and K = K1 + K2. In the case where Ki = 0 and ωi = 0, we will obtain the first
acoustic branch of the structures formed; the second acoustic branch begins with the boundary frequency ω2 =
(K/2M)1 ⁄ 2.

Experimental, Results, and Discussion. As an investigation object, we used a C-65 PVC obtained by suspen-
sion polymerization and purified by reprecipitation from a solution with MM = 1.4⋅105 [4]. The polymer being inves-
tigated was pigmented with a powder of a microatomized tungsten (W) (d = 12⋅10−6 m), which was preliminary
degreased with CCl4 and dried at T = 393 K. The investigation samples were prepared by direct mixing of the pig-
ment with the PVC in the T–P regime at T = 403 K and P = 10.0 MPa. The viscoelastic properties of the PVC sys-
tem, subjected to the action of a field with a frequency of 0.4 MHz, were investigated by the pulsed method and the
rotating-plate method under the shear-deformation conditions [4]. The density of the composite was determined in ac-
cordance with [18].

In the computational relations (3), (4), and (13), the energy of binding of atoms of the principal-valence chain
of a polymer micromolecule was equal to 42⋅10−21 N⋅m and the energy of the intermolecular interaction was equal to
3.5 ⋅10−21 N⋅m at a distance between the atoms of a monomeric link of 1.54⋅10−10 m (C–C), 1.08⋅10−10 m (H–H), and
1.78⋅10−10 m (H–Cl) [10]. Expression (26) was solved using (3) and (4) for a maximum possible shift of the structural
elements of the polymer from their equilibrium position [15]. In this case, the relative mean-square shifts of these ele-
ments were respectively equal to (0.026–0.038) and (0.095–0.130).

Figure 1 shows the dependence of the frequency of vibrations of PVC elements on the degree of their dis-

placement from the equilibrium position γ = 
r − l

l
 = 





r − a
a




. It is seen from this figure that, at all the values of γ,

the frequency spectrum of the C–C bond is harder than the frequency spectra of the H–H and H–Cl bonds. The fre-
quencies of vibrations of structural elements of the macromolecules at the polymer–pigment interface exceeds the cor-

responding values of ωk for the structural elements of the macromolecules found in the bulk of the polymer matrix.

Figure 2 shows the dependence of the quasielastic constants of the PVC structural elements interacting with
the active centers of the tungsten surface W on the degree of their displacement γ and the distance from them to the
active centers. It has been established (Fig. 2) that when the displacements of the indicated structural elements are
equal to 0.001 and 0.01 and r = r0, K is equal to 2.89⋅105 N/m and 2.54⋅104 N/m. In this case, at all values of N, K
sharply decreases with increase in distance from the PVC structural element to the surface of the microatomized tung-
sten. Figure 3 shows the dependence of ωk on r in the case where the PVC structural elements interact with the active
centers of the surface of the microatomized tungsten w. When the value of γ varies in a discrete range (γ = 0.001,

Fig. 1. Dependence of the value of ωk on γ for the following bonds: 1) C–C;
2) H–H; 3) H–Cl; 4) H–W; 5) Cl–W.
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0.01) and the distance between the PVC structural elements is in equilibrium, the vibrational frequency of the atoms
falls within the range 4.41⋅1015–1.31⋅1015 Hz. When the Cl–W interaction is realized and the displacements of the ele-
ments are equal to 0.100l and 0.245a, the frequencies of their vibrations are decreased to, respectively, 2.39⋅1014 Hz
and 1.59⋅1014 Hz. If, in accordance with [5], 2⋅102 monomeric links of a chain participate in a cooperative motion in
a PVC containing 1.4⋅1022 recurring identical units in a unit volume, complex vibrations of various types can arise in
the range 1.2⋅1012–7.1⋅1013 Hz at ri changing from ri ≤ 1.245l to ri ≤ 1.629l because, primarily, of the disruption of
the weakest intermolecular bonds.

At the same time, it is seen from Eq. (26) that, in the case where 10−18 ≤ B ≤ 10−12 N⋅sec⋅m−2 and
2⋅10 ≤ n ≤ 102, the dynamic PVC + W system can be purposefully controlled with the use of a low-power external pe-
riodic field that provides synchronization without disruption of the inter- and intramolecular bonds. This opens up pos-
sibilities to use heterogeneous polymer systems with ϕ ≥ ϕcr as dampers, generators and/or energy transformers.

The results obtained are in good agreement with the data of the IR-spectroscopy investigations carried out in
[11]. The appearance of the optical bands at 930, 1335, 1428, and 1730 cm−1 responsible for the (2.79–5.19)⋅1013 Hz
vibrations of the composite investigated at T = 313 K points to the fact that the PVC macromolecules are structurally
ordered and execute stretching vibrations.

Thus, the frequency spectrum of the structural elements of heterogeneous polymer systems based on PVC,
which is a typical representative of flexible-chain polymers, is determined not only by the type of the inter- and intra-
molecular interactions occurring in them, but also the type of the microatomized metal with which they are pigmented.
At ϕ ≥ ϕcr, a definite dynamic system with new properties different from the properties of low-molecular crystal lat-
tices can be obtained. The results obtained can be used for engineering calculations of the structural-mechanical char-
acteristics of a composite.

This work was carried out with financial support from the Basic Research Foundation of the Ministry of Edu-
cation and Science of Ukraine in accordance with agreement No. 0103U00156.

NOTATION

A, D, energies of the intra- and intermolecular bonds respectively, J; a, distance, m; B, C, constants; d, diame-
ter of a particle, m; E, strength, C⋅m−2; G, E

__
(l), energy and mean energy, J; F1(r), F2(r), forces, N; Fsur and Fmass,

surface and mass forces, N; I1, I2, ionization potential, eV; j = √−1; hq, step; ∆h, distance; K, K1, K2, quasielastic-
force coefficients, N⋅m–1; k, Boltzmann constant, J⋅K–1; l, equilibrium distance between the atoms, m; M, mass of a
segment, kg; MM, molecular mass; m1, m2, m3, coefficients; N, number of segments; n, number of monomeric links;

Fig. 2. Dependence of the value of K on r for PVC + W composite at γ =
10−3 (1), 10−2 (2), and 0.245 (3) for N = 20.

Fig. 3. Dependence of the value of ωk on r for PVC + W composite at γ =
10−3 (1), 10−2 (2), and 0.245 (3) for N = 40. 
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P, pressure, Pa; Pi, electric moment, C⋅m; qi, charge, C; Rqi, force, N; Rq, resultant force, N; r, distance between the
atoms, m; rk, distance from an active center of the surface, m; T, temperature, K; t, time, sec; u1(r), Lenard–Jones po-
tential, N⋅m; u2(r), Morse potential, N⋅m; uo, uin, and ud, energies of the orientation, induction, and dispersion interac-
tions, J; v, velocity, m⋅sec−1; XOY, coordinate system; x, y, z, coordinates, m; α, constant; α1, α2, polarizability; β,
solid angle; γ, relative displacement; δ, constant; ε, permittivity; ε0, dielectric constant, F⋅m−1; η, cross section, m2;
µ1, µ2, dipole moment, C⋅m; ξ, displacement, m; σ, shear stress, N⋅m−2; τ, lifetime, sec; ϕ and ϕcr, content and criti-
cal content of a pigment, vol.%; ϕk(rk), potential, V; ω, cyclic frequency, sec−1. Subscripts: 0, initial value; 1, 2, ...,
ordinal number; i, k, q, g, α, β, indices characterizing the frequency; sur, surface, mass, mass; o, orientation; in, in-
duction; dis, dispersion; cr, critical.
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